ODEProblem:Warning: dt <= dtmin. Aborting.

计算出错:
┌ Warning: dt <= dtmin. Aborting. There is either an error in your model specification or the true solution is unstable.
└ @ DiffEqBase C:\Users\好兔子.julia\packages\DiffEqBase\cPqrj\src\integrator_interface.jl:156

DiffEqBase C:\Users\好兔子.julia\packages\DiffEqBase\cPqrj\src\integrator_interface.jl:156:

如果不加这段,就不会报错。

# 
using PyPlot
using DifferentialEquations
using LinearAlgebra
using CSV,DataFrames



###########################################################################################
                   INPUT                                                             
###########################################################################################
module msh

using PyPlot

export plotMesh

struct Mesh
    coords

    function Mesh(n1,n2)
      @assert (n1 > 0 && n2 > 0) "Mesh arguments must be positive"
      coords = createCoords(n1,n2)
      new(coords)
    end
end

  function createCoords(n1,n2)

  #Fill coords array
  coords = zeros(2,n1*n2);
  cnt = 1
  for i = 1:n2
    for j = 1:n1
      coords[1:2,cnt] = [j-1,i-1]
      cnt = cnt+1
     end
  end

  return coords
  end


  function plotMesh(m::Mesh,c::String)

    #Plot coordinates
    for i = 1:size(m.coords)[2]
        plot(m.coords[1,i],m.coords[2,i],marker="o",color =c, markersize = 10)
    end

  end
end

 #number of particles will be n*n
N = 10*18
#set up mesh
m = msh.Mesh(10,18)
npull = 40 #number of elements being pulled at a constant speed
nhold = 40 #number of elements being held at their initial position

#m.coords[2,1:nhold]=m.coords[2,1:nhold]+0.99*ones(size(m.coords[2,1:nhold]))
#m.coords[2,131:N]=m.coords[2,131:N]-0.99*ones(size(m.coords[2,131:N]))

#Set time interval [0,maxT]
maxT = 3e-6
E=25000000000
v=0.26
k=E/(3*(1-2v))
r=4
h=1
c=210*E/(5*pi*r^3)
u=E/(2+2v)
#Set up matrix of spring constants
global K
K = zeros(N,N)
for i = 1:N
  for j = i+1:N
    K[i,j] = c*(1-(norm(m.coords[:,i] - m.coords[:,j],2)/r)^2)^2
    if norm(m.coords[:,i] - m.coords[:,j],2)>4
      K[i,j]=0
    end   #compute 2-norm because why not
    K[j,i] = K[i,j]
  end
end
#strengthen bond to the boundary nodes

##################################################################################################

#count the number of bonds each element has
global nbonds = Dict{Float64, Array{Float64,2}}()
nbonds[0.] = N*ones(N,1)

c1 = [0 -100000]
s0=125/(6*u/pi+16/(9*pi^2)*(k-2u)*r)
function f(x,p,t)
  global K
  H = ones(size(K))
  s=ones(size(K))
  xh  = [m.coords[1,1:nhold] m.coords[2,1:nhold];
         hcat(x[1:N-npull-nhold], x[N-npull-nhold+1:2*(N-npull-nhold)]);
        (c1[1]*t*ones(size(m.coords[1,N-npull+1:N]))+m.coords[1,N-npull+1:N]) (c1[2]*t*ones(size(m.coords[2,N-npull+1:N]))+m.coords[2,N-npull+1:N])]'
 for i = 1:N
    for j = i+1:N
      s[i,j]=(norm(xh[:,i]-xh[:,j])-norm(m.coords[:,i] - m.coords[:,j],2))/norm(m.coords[:,i] - m.coords[:,j],2)
      if s[i,j] > sqrt(s0) 
        H[i,j] = H[j,i] = 0
      end
      #make particles repulse each other/try to enforce order
      #confuses the ode solver for some reason
if norm(xh[:,i] - xh[:,j]) < norm(m.coords[:,i] - m.coords[:,j],2) && H[i,j] > 0
        H[i,j] = -H[i,j]
        H[j,i] = H[i,j]
      end
    end
  end
  K=K.*H
  #recalculate the number of bonds
  global nbonds
  nbonds[t] = sum(K.!=0, dims=2)

  #Create stiffness matrix
  A = zeros(N-npull-nhold,N-npull-nhold)
  for i = 1:N-npull-nhold
    A[i,i] = sum(K[i+nhold,1:N]) #diagonal is special :)
    for j = 1:N-npull-nhold
      if(i!=j) A[i,j] = -K[i+nhold,j+nhold] end
    end
  end
  cf=DataFrame(A)
  CSV.write("a.csv",cf)
  #Create "forcing" term
  B = zeros(2*(N-npull-nhold),1)
  for i = 1:N-npull-nhold
    B[i]     = sum((c1[1]*t*ones(size(m.coords[1,N-npull+1:N])) + m.coords[1,N-npull+1:N]).*K[i+nhold,N-npull+1:N]) + sum(K[i+nhold, 1:nhold].*m.coords[1,1:nhold])
    B[i+N-npull-nhold] = sum((c1[2]*t*ones(size(m.coords[2,N-npull+1:N])) + m.coords[2,N-npull+1:N]).*K[i+nhold,N-npull+1:N]) + sum(K[i+nhold, 1:nhold].*m.coords[2,1:nhold])
  end
  y = [A*x[1:N-npull-nhold]+B[1:N-npull-nhold];
        A*x[N-npull-nhold+1:2*(N-npull-nhold)]+B[N-npull-nhold+1:2*(N-npull-nhold)]]''
  return [x[2*(N-npull-nhold)+1:end]; y]
end


#Solve system of second order ODE using ode45
y0 = [m.coords[1,nhold+1:N-npull];
       m.coords[2,nhold+1:N-npull];
       zeros(2*(N-npull-nhold))]  #initial conditions
                                  #initial positions given by mesh, initial speed set to zero
                                  #tout,yout  = ode45(f, y0,[0:0.1:maxT;])
prob  = ODEProblem(f, y0,(0.0,maxT))
#alg = Tsit5()
sol = solve(prob)
tout = sol.t
yout = sol.u
ys = hcat(yout...)'
print("Number of timesteps: ", size(tout)[1], "\n")